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V
alue-at-risk is rapidly becoming the preferred means
of measuring risk. But blindly accepting the assump-
tions that underpin its statistical methods can have ad-
verse consequences for real risk managers operating
in real markets. The purpose of this paper is to demon-
strate that variance-based statistical methods are vari-

ably unreliable and that this unreliability is related to sample size in a
counter-intuitive manner, to holding period and, possibly, to asset class.
However, this is not a statistical article, it is an article about statistics.1 Sta-
tisticians will not find elaborate derivations of equations or mathematical
proofs here. 

The reliability of risk estimates has its origins in psychometrics, the dis-
cipline associated with psychology that is concerned with the properties
of tests and measurements. There are two principal properties in a psy-
chological test: validity and reliability. Validity is whether a test actually
measures what it purports to measure. Reliability is how consistently a test
measures whatever it measures. 

In modern portfolio theory, as well as in VAR applications, risk is de-
fined as the volatility of returns. In turn, the volatility of returns is usually
measured by the standard deviation of returns. Following the psychome-
tric model, one can ask about the validity of the standard deviation as a
measure of risk and about its reliability. How consistently do standard de-
viations and estimates based on them measure whatever is measured? Under
what conditions can they be trusted?

There are well-developed technologies for assessing the reliability of
psychological tests, but they are much more elaborate than is necessary
for this paper. More important, they depend on the very assumptions at
issue here. The issue of reliability in risk estimation does not require much
statistical power to be explored.

Statistical assumptions
The use of measures such as standard deviation depends upon assump-
tions about the nature of the data being measured. If the assumptions are
met, use of the measures may be unproblematic. If they are not met, there
may be problems interpreting and using the numbers. It is therefore use-
ful to review both the assumptions and the use of measures such as stan-
dard deviation in risk estimation.

Several assumptions underpin the use of linear, variance-based statis-
tics to describe the dispersion (volatility) of distributions of market returns
and the use of product-moment correlations to describe the relationship
between a pair of time series of market returns. The principal assumptions
are that:
l market returns are normally and independently distributed (NID); and
l the distribution of returns is stationary – as one moves through time, the
mean and variance of the distribution are constant. 

Product-moment correlations make the further assumption that only lin-
ear relationships between markets are of interest.

Research has shown that the assumption that distributions of raw
market returns are NID is false. Though there is variation from market

to market, distributions of daily returns of financial markets are gener-
ally both sharp-peaked and fat-tailed. In addition, some return distrib-
utions are skewed and, in the short term at least, there is evidence of
serial dependence in some markets. Nevertheless, with some judicious
massaging of the data – eg, detrending and using log returns rather than
raw returns – and with a good deal of confidence in the robustness of
linear, variance-based statistics in the face of violations at the extremes,
standard deviations and product-moment correlations of historical re-
turns are used for VAR estimation.

The attraction of standard deviation is that the properties of the normal
distribution are very well understood. The reason a time series of market
returns is forced into a NID distribution is to justify bringing linear variance-
based statistical methods and probabilities to bear on risk estimation. The
RiskMetrics Technical Manual says: “An important advantage of assuming
that changes in asset prices are distributed normally [in spite of knowing
that they are not] is that we can make predictions about what we expect
to occur.” The distribution is not defined by the data; it is chosen for no
better reason than that we have some statistical tools available.

If the mean and standard deviation of a normal distribution are known,
very precise probability statements can be made about the location of val-
ues in that distribution. For example, one can confidently assert that the
probability that a randomly selected value will be more than +/–1.645 stan-
dard deviations away from the mean is 0.10, with half of the probability
(0.05) in each tail. The ability to make such probability statements with
high confidence is the property of normal distributions that VAR estimates
depend on. That property depends on the robustness of the probability
statements in the face of violations of the assumptions. VAR estimates are
especially dependent on robustness with respect to violations of the as-
sumptions in the tails of the distribution. Since VAR estimates are typical-
ly concerned with extreme probabilities, say, 0.05 or even 0.01, the question
is not: how robust is the standard deviation with respect to violations of
the assumptions in general? Rather, it is: how robust is it at the extremes
in the face of violations of the assumptions?

The short answer to the latter question is “not very”. Here I do not in-
tend to provide extended tests of the robustness of the standard deviation
as a measure of the probability of extreme returns. Rather, my point can
be made much more simply and directly by demonstrating a counter-in-
tuitive property of the standard deviation as a measure of the probability
of extreme market returns.

Reliability of real standard deviations
If I am a portfolio manager or bank officer concerned with risk control, I
am not interested in the population parameters of a hypothetical distribu-
tion of an infinite population of returns. I am interested in the best possi-
ble answer to a simple question: “Under current conditions, what is the
best possible estimate of my risk today?” The key phrase in that sentence

1 We will use the basic methodology described in JP Morgan’s RiskMetrics Technical
Manual, fourth edition, 1997
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is “best possible estimate”. Take the assertion that the risk of losing a spec-
ified number of dollars or more in the next 24 hours is 0.05, a typical an-
swer provided by variance-based estimation methods. The next question
should be, “How good is that estimate? If I get 100 such estimates in the
next 100 business days, how often and by how much will the actual num-
ber of losses of the specified size vary from the 0.05 asserted?”

The “how good is that estimate?” question is typically answered by ap-
pealing to somewhat circular theoretical arguments (“since we’ve assumed
a normal distribution because the distribution of market returns passed our
tests for normality, it’s our best estimate because we know the properties
of normal distributions”) and/or by citing data showing that the propor-
tion of outliers in the sample as a whole does not differ markedly from
that expected given the normality assumption. For example, the RiskMet-
rics Technical Manual reports the proportion of actual outliers against the
expected proportion in large samples for a number of the markets it analy-
ses (the smallest sample reported is two years of daily data, roughly 500
trading days). But it does not report on the proportions of observations
exceeding the limits tested in the sense of “reliability” as defined above,
ie, the consistency with which a test measures whatever it measures through
time. By summarising over entire data sets, the reported data throw away
time, and time is important to real risk managers.

Consider the following exercise. Given a five-year (1,250 trading days)
time series of daily returns from some market, say the S&P 500, suppose
that one calculates a parallel series of moving standard deviations from a
trailing sample of returns. Each day, one calculates the standard deviation
for the preceding N days, and then looks at the next day (day 1) to see if
the return at the close of trading on day 1 is outside +/–1.65 standard de-
viations. Then one creates a data series of 900 values consisting of the
numbers of such outliers in a moving window of 100 days depth.

Now, one has a choice of a 30- or 250-day trailing sample from which
to calculate the standard deviation. Which will provide the most reliable
results, in the sense that the proportion of day 1 outliers in the 100-day
moving window is least variable over the most recent 900 days?

Figure 1 contains the answer to the question for the S&P 500. The more
reliable estimate of risk is provided by the 30-day trailing standard devia-
tion, where “more reliable” means that the actual number of outliers in the
100-day moving window is less variable through time for the 30-day sam-
ple than for the 250-day sample.

Interestingly, in informally trying this exercise with various people, those
who are statistically sophisticated tend to get it wrong, while those who are
statistically untutored tend to get it right. There is a good reason for this. In
introductory statistics, people are taught the law of large numbers and the
central limit theorem. Large samples are better than small samples. The larg-
er the sample, the more nearly normal the sampling distribution and the
smaller the standard error of estimate of a population parameter from a
sample statistic. Therefore, the 250-day sample should give a better esti-
mate of the population parameter than the 30-day sample and therefore
(here comes the leap) the 250-day trailing sample should be more reliable. 

In orthodox sampling theory, that is correct; large samples are better
than small samples. (I am ignoring issues associated with the relations be-
tween statistical power, effect size and Type I error level.) However, in the
methods used to estimate near-term risk in financial markets, the law of
large numbers and the central limit theorem are dangerously deceptive. In
estimating near-term risk, one is wholly uninterested in population para-
meters. One is interested only in the likely state of affairs tomorrow or next
week. A hypothetical infinitely large and normally distributed population
of market returns is at best irrelevant to that problem; at worst, it is active-
ly misleading. The statistically untutored respondents explain their choice
of the 30-day sample by saying things such as: “Well, what happened a year
ago isn’t relevant; what happened recently is what’s important.” This is the
same reasoning that led JP Morgan to use 74-day exponential weighting as
the basis for the RiskMetrics data set, and it is correct.

The reverse is true for random samples of returns, as orthodox sam-
pling theory suggests. If samples of 30 and 250 are randomly selected with-
out replacement from the set of 1,250 days, the larger sample provides
more reliable “forecasts” for the 1,250 returns. However, a 250-day ran-
dom sample is not as reliable as a 30-day trailing sample, even for the
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er than the VAR estimated at the 0.10 level – in a 100-day moving window
for both series of estimates of daily VAR. Figure 2 shows the relevant re-
sults. As for the standard deviation, the shorter trailing sample produced
more reliable VAR estimates than the longer one.

It transpires that the reliability of one-day VAR estimates is not linear or
even monotonic in sample size. Repeating the VAR analysis described in
the preceding paragraph, using sample sizes from 15 to 500 trailing days,
one finds that reliability, measured by the range (maximum minus mini-
mum) of the number of outliers in the 100-day moving window, displays
an inflected curve across sample sizes, with the inflection occurring be-
tween samples of 150 and 240 days. Figure 3 shows the relevant results.
Note that there is a floor effect: the minimum number of outliers is zero,
compressing the range on the low end, so interpreting the curve shown on
figure 3 is not straightforward. The non-monotonicity might also be an arte-
fact of the particular period used for the test. What is clear, however, is that
using a year of trailing prices to estimate one-day VAR produces a range of
actual outliers that is much wider than the range for a 30-day sample.

I repeated the two-component portfolio VAR analysis for all 28 of the
pairs of eight financial markets (two equities, three interest rates, three cur-
rencies) over a one-day horizon. The blue figures in table A show the
range of one-day outliers (maximum minus minimum) for each 100 days
for 30- and 250-day trailing samples for the 28 pairs of markets. As is ob-
vious, the 30-day sample produced a narrower range with just one ex-
ception, the FTSE 100/S&P 500 pair.

The main difference in the larger sample size is an increase in the maxi-
mum number of outliers per 100 days, which is important to risk managers.
The larger sample size shows substantially more outliers during some peri-

1,250-day population from which the 250 values were randomly selected.
The 250-day random sample’s range of outliers (maximum minus mini-
mum) in a 100-day moving window is twice the range of the 30-day trail-
ing sample. Note that for the more reliable 30-day trailing sample, all
forecasts are for novel days, while the 250-day random sample is attempting
to “forecast” the same population from which it was drawn, including the
250 days that were used to calculate the standard deviation. An implica-
tion of the reversal of the expected sample size effect for trailing samples
of market returns is that either the distribution of returns is not stationary
or returns are not serially independent, or both. As a consequence, stan-
dard sampling theory and the statistics that depend on it are inapplicable
to risk estimation.

The reliability of VAR estimates
To address this issue in a slightly more complex situation, I tested VAR es-
timates for a two-component portfolio composed of equal dollar-long po-
sitions in the S&P 500 and the 30-year US Treasury bond, using the daily
near-month futures price series from January 1, 1991 to October 11, 1996
as the basic data set. Two trailing sample sizes – 30 days and 250 days –
were used initially to calculate the standard deviations of returns of the two
markets and the correlation between the markets, the two inputs to VAR
estimates. The one-day, 0.10 two-tailed VAR was calculated for each day,
following the methodology described in the RiskMetrics Technical Manu-
al, with two exceptions: I used unweighted values rather than exponential
weightings, and I used log returns rather than raw percentage returns. 

As in the standard deviation exercise above, I counted the number of
outliers – occasions on which the actual day 1 return was larger or small-

Market Sample FTSE 100 S&P 500 US
size bond

S&P 500 30 14 22 11 18 – – – – – – – –
250 13 26 9 8 – – – – – – – –

US bond 30 12 24 10 14 10 37 11 16 – – – –
250 19 34 8 9 22 48 13 19 – – – –

UK gilt 30 14 25 10 11 13 32 11 16 15 30 9 14
250 26 29 5 4 21 48 10 13 27 52 9 12

Bund 30 14 31 10 13 11 28 11 17 10 30 12 14
250 20 22 5 2 16 31 9 10 22 29 8 12

Sfr/$ FX 30 9 28 10 12 10 30 11 18 12 26 11 16
250 12 24 8 11 17 40 9 18 15 38 11 11

DM/$ FX 30 9 27 10 10 10 28 11 17 12 25 10 16
250 13 22 7 8 17 42 9 18 21 39 9 14

¥/$ FX 30 11 39 11 10 9 41 10 17 9 40 10 18
250 15 31 7 6 15 43 9 15 20 53 8 10

UK gilt Bund Sfr FX DM FX

– – – – – – – – – – – – – – – –
– – – – – – – – – – – – – – – –

– – – – – – – – – – – – – – – –
– – – – – – – – – – – – – – – –

– – – – – – – – – – – – – – – –
– – – – – – – – – – – – – – – –

16 29 11 15 – – – – – – – – – – – –
29 48 6 7 – – – – – – – – – – – –

11 22 12 15 11 30 11 16 – – – – – – – –
14 33 9 15 19 44 13 18 – – – – – – – –

12 22 11 15 13 30 10 15 13 43 10 21 – – – –
19 30 10 13 15 44 11 18 19 44 6 12 – – – –

10 33 10 13 11 38 10 15 11 30 9 16 13 24 10 15
20 42 9 14 20 51 12 18 23 46 8 9 19 49 6 13

A. Ranges and median numbers of outliers in several VAR analyses
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ods than the smaller sample. In other words, using longer trailing samples
for VAR estimates produces periods in which there are more surprises. Lest
one believe that most of the surprises are pleasant ones, the 250-day sam-
ple for the S&P 500/US bond pair in a 100-day period produces a maximum
of 17 one-day losses that are greater than that forecast by the 0.05 negative
VAR, while the 30-day sample produces a maximum of just nine such loss-
es in a 100-day period. (The “normal” expectation is five.) The same rela-
tionship with sample size that characterises all outliers shown in figure 2
holds for negative outliers: the longer the trailing sample, the more unpleasant
surprises one gets during some periods, up to more than three times the fre-
quency expected on the NID assumption. A promise of probabilistic safety
in the long run is worthless if one goes broke in the short run.

While I am wary of generalising too far based on the relatively limited
data sets I have tested, there is a suggestion in the S&P 500/US bond VAR
data that is consistent with the statistically untutored reason for choosing
a shorter trailing sample. Figure 4 shows an X-Y plot of VAR reliability
against the trailing standard deviation of returns of the S&P 500 for the 30-
day and 250-day sample sizes. It suggests that the superior reliability of
the 30-day sample for the S&P 500/US 30-year bond pair is most appar-
ent during periods of high stock market volatility, while the reverse ap-
pears to be the case during periods of low volatility. The former backs JP
Morgan’s reasons for selecting a relatively short exponentially weighted
sample, rather than the 250-day unweighted sample required by the Basle
Committee on Banking Supervision. It may be that it is during market pe-
riods when one most needs reliable risk estimates that long trailing sam-
ples provide the least reliability. I emphasise that this is tentative; it is
based on a limited data set and more research is needed.

Basle on VAR estimation
The Basle Committee has issued guidelines for the use of VAR estimates
by regulated banks. For the purposes of this discussion, the three relevant
guidelines are that VAR estimates must: 
l be based on a sample size of at least one year of data (roughly 250 trad-
ing days) or a weighted sample with an average lag of no less than six
months;
l use a 0.01 probability value (ninety-ninth percentile, one-tailed confi-
dence interval); and 
l estimate the risk for a 10-day holding period. 

To evaluate these guidelines in the light of the findings reported above,
I repeated the two-sample VAR tests using a 10-day horizon rather than a
one-day horizon. The Basle Committee allows VAR estimates calculated
for a shorter time interval to be scaled up by a factor equivalent to the
square root of time, so I used the one-day VAR estimates calculated above,
multiplied by the square root of 10. The Basle Committee’s decision to
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allow VAR estimates to be scaled as the square root of time follows from
the assumption that returns are NID and serially independent.

As above, I counted the number of outliers in a 100-day moving win-
dow. For this exercise, however, “outlier” has a slightly different meaning.
Instead of a one-day, close-to-close excursion greater than the VAR esti-
mate, an outlier is now defined as the largest day-0-close-to-day-N-close
excursion within the 10-day period, where N varies from one to 10. For
example, take a two-asset portfolio long both assets, where both asset
prices move down sharply during the first five days of the 10-day holding
period and then move back up so that there is little or no change from
day 0 close to day 10 close. The sharp day 0 to day 5 excursion may have
gone outside the confidence limit defined by the VAR estimate and thus
will be counted as an outlier even though the day-0-close-to-day-10-close
return is inside the VAR limit. The day-0-to-day-5-excursion is, after all, a
loss greater than expected on a daily mark-to-market basis. I repeated this
exercise for the 28 pairs of markets. The red figures in table A show the
ranges of the number of “within 10-day outliers” for the portfolios and
sample sizes.

The pattern of results of this exercise essentially mirror those of the
one-day holding period. As the table shows, for 23 of the 28 pairs, the 30-
day trailing sample is more reliable, while for five pairs the 250-day sam-
ple is more reliable. Four of the five pairs in which the 250-day sample is
more reliable have the FTSE 100 as a component, as did the sole excep-
tion in the one-day data. What seems clear is that the reliability of VAR es-
timates depends on interactions among holding period, sample size and
(possibly) unidentified characteristics of the particular assets or asset class-
es contained in a portfolio. At the least, this raises questions about a “one
size fits all” approach to VAR estimation.

Finally, the relationship between sample size and reliability of VAR es-
timates holds for longer time series. I tested VAR estimates for all 15 pairs
of an equity market, interest rate market and four foreign exchange rates
in a 3,800-day data set for a one-day holding period. The differences re-
ported above between the 30-day and 250-day samples in estimating one-
day VAR are slightly attenuated but still very clearly present in all 15 pairs.
The relationship between trailing sample size and reliability is not an arte-
fact of the period chosen for test. Table B shows the ranges of 100-day
VAR outliers for the 15 pairs in the 3,800-day data set.

Summary of major findings
There appears to be an interaction among trailing sample length and hold-
ing period along with a possible third variable, portfolio composition. Four
main results are evident:
l Down to some lower limit, shorter trailing samples usually produce more
reliable VAR estimates than longer ones. This is true for one-day and 10-
day holding periods.
l Across sample length and asset class, VAR estimates for the one-day
holding period are consistently and substantially more reliable than for the
10-day holding period.

Market Sample S&P US Sfr/$ £/$ DM/$
size 500

US 30 16 – – – –
250 27 – – – –

Sfr/$ 30 15 13 – – –
250 23 17 – – –

£/$ 30 11 12 18 – –
250 23 24 25 – –

DM/$ 30 13 12 14 18 –
250 21 20 25 26 –

¥/$ 30 15 14 15 19 14
250 25 24 25 22 25

Note: one-day holding period; 3,800-day data set

B. Range of number of VAR outliers in 100-day
moving window for 15 pairs of markets



tend to be higher than the expected value, with the smaller sample size
showing greater departures from the expected value of 10. I report medi-
ans rather than means because the distributions of outliers are severely
compressed on one boundary – they cannot go below zero – and so means
are misleading representations of the central tendency of the distribution.
I report no significant digits to the right of the decimal point because, as
I have argued above, that level of precision is at best misleading.

Alternatives
Given that variance-based risk estimates in general and VAR estimates in
particular are variably unreliable, what does one do? First, one must recog-
nise the fact of unreliability. The array of powerful statistical techniques
available to the risk manager – to the extent that they depend on the as-
sumptions of normality at the extremes, serial independence and station-
arity – are founded on quicksand. Explicit recognition of unreliability moves
the focus from massaging numbers in ever more complex ways to devis-
ing defences against risk in the face of uncertainty in the Keynesian sense
of the word. Depending on unreliable estimates can be costly. To design
appropriate defences, risk managers need to know just how unreliable
their estimates are.

An alternative is to try to devise risk estimation techniques that avoid
or mitigate the problems inherent in linear variance-based statistics. My
company has been exploring alternative risk estimation techniques. We
use proprietary time series representation and pattern recognition algo-
rithms that produce descriptions of the patterns of linear and non-linear
relationships within a cluster of related markets through time. Given a his-
torical database of such descriptions and given the description of the pat-
tern for today, our programs select instances from the past that display
patterns most similar to today’s pattern. We use non-parametric measures
of the dispersion – percentiles – of that selected sample to estimate today’s

risk. For comparable sample sizes,
this approach often (though not al-
ways) produces more reliable (in the
sense defined earlier) risk estimates.

The most reliable risk estimates
we have so far produced are created
by a hybrid of the two approaches.
Using both the VAR calculated from
an unweighted trailing sample and
the non-parametric risk estimates
from samples selected by our tech-

nology, and simply taking the larger of the two on each day produces im-
provement in the empirical reliability of risk estimates. For example, in the
250-day sample case, for the S&P 500/US bond pair the range of variation
in the number of negative outliers for each 100 days is reduced from 17
to 10, the reduction being accompanied by an increase in accuracy as mea-
sured by the difference between the total number of outliers and the ex-
pected value. The reduction in the range of variation is wholly accounted
for by a decrease in the maximum number of outliers per 100 days. 

We have not yet completed all the research necessary to evaluate the
hybrid methodology further. A central part of the problem, of course, lies
in the way one represents the patterns of interactions among markets and
how one defines “similarity”.

This is not meant to claim that our approach is the best possible way
to estimate risk, though naturally we are attracted to it. However, it is meant
to demonstrate that there are alternative ways to approach risk estimation
aside from (or in addition to) linear variance-based statistics. Market re-
turns are neither NID nor stationary, and regardless of how one massages
the data, violations of those assumptions can lead to serious practical con-
sequences. Nevertheless, the past can tell us about the future provided that
we know which properties of the past we should pay attention to and how
we should interrogate the past about those properties. The fundamental
point is this: believing a spuriously precise estimate of risk is worse than
admitting the irreducible unreliability of one’s estimate. False certainty is
more dangerous than acknowledged ignorance. ■

Richard Hoppe is chief executive officer of IntelliTrade, a risk man-
agement decision support firm
e-mail: itrac@itrac.com

50 • RISK • JULY 1998

Risk primer

l A market or asset class effect may be associated with the FTSE 100, with
pairs involving the FTSE producing five of the six reversals of the general
sample size effect.
l The greater reliability of shorter trailing samples holds for long time se-
ries; it is not an artefact of a particular period or market regime.

Implications
What does one make of all this? First, these findings imply that asserting a
VAR probability estimate with two-decimal-place precision at the 0.10, 0.05
or 0.01 level seriously misrepresents the precision possible regardless of
sample size, holding period or asset class. The apparent exactness of the
probability statement can mask more than an order of magnitude of vari-
ation in the actual probability of loss on a time scale appropriate to the
practical situation of a risk manager – months and quarters rather than
decades. For an S&P 500/US bond portfolio and a 250-day trailing sample,
on any given day the probability (measured as the frequency of occur-
rence per 100 days) of incurring a one-day loss to a long position greater
than that specified by the VAR estimate may be 0.05, 0.17 or 0.00. For a
30-day trailing sample, the range of variation is narrower, but it is not triv-
ial. The strongest statement one can honestly make is that the probability
of a loss of the specified magnitude at the calculated ninety-fifth percentile
is in the fuzzy neighbourhood of 0.05-ish. That is no doubt unsatisfying to
a risk manager or regulator, but to pretend otherwise is to mislead oneself
and one’s clients. The putative precision of a VAR probability estimate with
two significant digits to the right of the decimal point is deceptive.

Second, within broad limits, for risk estimation, shorter samples can be
substantially more reliable than long samples. In this vein, recall that the
Basle Committee has opted for a one-year unweighted trailing sample and
a 0.01 one-tailed probability as the standard for VAR estimates. As figure 3
and table A show, the committee is erring far out on the large sample side,
thereby guaranteeing substantially
less reliable estimates than is possible.
The RiskMetrics data set uses 74-day
exponential weighting to estimate
VAR. I have not tested 74-day expo-
nentially weighted data, but my bet is
that they are similar to the 30-day un-
weighted data. Given the FTSE results
above, both the Basle requirements
and the RiskMetrics data set are sub-
ject to the “one size fits all” question.

Third, use of the broad array of modern statistical methods without a
clear understanding of the implications of their assumptions for the actual
real-world application to be modelled always needs examining. The math-
ematical sophistication and complexity of the techniques can mask a deep
misconception of the applied problem. In managing risk, one is interested
in as dependable an answer as possible to the question “What is my risk?”
Given a distribution of returns that is non-normal, especially at the extremes,
and probably also non-stationary and/or serially dependent, the seeming
exactness and “scientific” appearance of variance-based estimates of risk
misrepresent the real situation. The alleged precision is far beyond what is
possible. Paradoxically, risk managers might often be better off depending
on weaker, small-sample, non-parametric estimation methods.

The perceptive reader will have noticed that I have not mentioned the
actual proportions of outliers in any of the results reported above. That is,
I have not reported the performance of the various conditions with respect
to the number of outliers over the whole time series. The reason is sim-
ple: in designing a risk estimation system, one’s first interest should be re-
liability. Once one has devised a reliable means of estimating risk, one can
proceed to tune the system to achieve the confidence limits desired if they
are possible. It is best to take as much as the data are capable of produc-
ing, but not to torture the data beyond what they can tolerate. The green
(one-day holding period) and black (10-day holding period) figures in table
A show the median number of outliers for the 28 pairs for the two hold-
ing periods for the shorter data set. As may be seen, for the one-day hold-
ing period the median number of outliers hovers close to 10, the expected
value. For the 10-day holding period, the medians are more variable and

The array of powerful
statistical techniques
available to the risk

manager… are founded 
on quicksand


